Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The physical processes of heat exchange between lakes and the surrounding atmosphere are important in simulating and predicting terrestrial surface energy balance. Latent and sensible heat fluxes are the dominant physical process controlling ice growth and decay on the lake surface, as well as having influence on regional climate. While one-dimensional lake models have been used in simulating environmental changes in ice dynamics and water temperature, understanding the seasonal to daily cycles of lake surface energy balance and its relationship to lake thermal properties, atmospheric conditions, and how those are represented in models is still an open area of research. We evaluated a pair of one-dimensional lake models, Freshwater Lake (FLake) and the General Lake Model (GLM), to compare modeled latent and sensible heat fluxes against observed data collected by an eddy covariance tower during a 1-yr period in 2017, using Lake Mendota in Madison, Wisconsin, as our study site. We hypothesized transitional periods of ice cover as a leading source of model uncertainty, and we instead found that the models failed to simulate accurate values for large positive heat fluxes that occurred from late August into late December. Our results ultimately showed that one-dimensional models are effective in simulating sensible heat fluxes but are considerably less sensitive to latent heat fluxes than the observed relationships of latent heat flux to environmental drivers. These results can be used to focus future improvement of these lake models especially if they are to be used for surface boundary conditions in regional numerical weather models. Significance Statement While lakes consist of a small amount of Earth’s surface, they have a large impact on local climate and weather. A large amount of energy is stored in lakes during the spring and summer, and then removed from lakes before winter. The effect is particularly noticeable in high latitudes, when the seasonal temperature difference is larger. Modeling this lake energy exchange is important for weather models and measuring this energy exchange is challenging. Here we compare modeled and observed energy exchange, and we show there are large amounts of energy exchange happening in the fall, which models struggle to capture well. During periods of partial ice coverage in early winter, lake behavior can change rapidly.more » « less
-
na (Ed.)Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to climate change, management practices, and natural disturbances; however, their effectiveness depends on their representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e., amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clustering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5), unique groups and a few large (> 100) to intermediate (15–70) groups, highlighting the significant ecological regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hydrological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses, upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under- sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these groups.more » « lessFree, publicly-accessible full text available September 1, 2026
-
To create a comprehensive view of ecosystem resource use, we integrated parallel resource use efficiency observations into a multiple-resource use efficiency (mRUE) framework using a dynamic factor analysis model. Results from 56 site-years of eddy covariance data and mRUE factors for a site in the US Midwest show temporal dynamics and coherence (using Pearson’s R) among resources are associated with interannual variation in precipitation. Loading factors are derived from mRUE observations and quantify how strongly data are connected to the underlying ecosystem state. Water and light resource use loading factors are coherent at annual timescales (Pearson’s R of 0.86), whereas declining patterns of carbon use efficiency loading factors highlight the ecosystem’s trade-off between carbon uptake and respiration during the growing season. At annual and monthly timescales, influence decreases from ~ 85 to ~ 65% for loading factors for carbon use, while influence of light use loading factors peaks to ~ 60% at growing season timescales. Quantifying variation in ecosystem function provides novel insights into the temporal dynamics of changing importance of multiple resources to ecosystem function.more » « less
-
Abstract The eddy covariance (EC) method is one of the most widely used approaches to quantify surface‐atmosphere fluxes. However, scaling up from a single EC tower to the landscape remains an open challenge. To address this, we used 63 site years of data to examine simulated annual and growing season sums of carbon fluxes from three paired land‐cover type sites of corn, restored‐prairie, and switchgrass ecosystems. This was also done across the landscape by modeling fluxes using different land‐cover type input data. An artificial neural network (ANN) approach was used to model net ecosystem exchange (NEE), ecosystem respiration (Reco), and gross primary production (GPP) at one paired site using environmental observations from the second site only. With a mean spatial separation of 11 km between paired sites, we were able to model annual sums of NEE,Reco, and GPP with uncertainties of 20%, 22%, and 8%, respectively, relative to observation sums. When considering the growing season only, model uncertainties were 17%, 22%, and 9%, respectively for the three flux terms. We also show that ANN models can estimate sums ofRecoand GPP fluxes without needing the constraint of similar land‐cover‐type, with annual uncertainties of 12% and 10%. These results provide new insights to scaling up observations from one EC site beyond the footprint of the EC tower to multiple land‐cover types across the landscape.more » « less
An official website of the United States government
